7 research outputs found

    An adaptive finite element method in L2-TV-based image denoising

    No full text
    The first order optimality system of a total variation regularization based variational model with L2-data-fitting in image denoising (L2-TV problem) can be expressed as an elliptic variational inequality of the second kind. For a finite element discretization of the variational inequality problem, an a posteriori error residual based error estimator is derived and its reliability and (partial) efficiency are established. The results are applied to solve the L2-TV problem by means of the adaptive finite element method. The adaptive mesh refinement relies on the newly derived a posteriori error estimator and on an additional heuristic providing a local variance estimator to cope with noisy data. The numerical solution of the discrete problem on each level of refinement is obtained by a superlinearly convergent algorithm based on Fenchel-duality and inexact semismooth Newton techniques and which is stable with respect to noise in the data. Numerical results justifying the advantage of adaptive finite elements solutions are presented.SFB-Report 2010-02

    Observation thinning in data assimilation computations

    No full text
    International audienceWe propose to use an observation-thinning method for the efficient numerical solution of large-scale incremental four- dimensional (4D-Var) data assimilation problems. This decomposition is based on exploiting an adaptive hierarchy of the observations. Starting with a low-cardinality set and the solution of its corresponding optimization problem, observations are successively added based on a posteriori error estimates. The particular structure of the sequence of associated linear systems allows the use of a variant of the conjugate gradient algorithm which effectively exploits the fact that the number of observations is smaller than the size of the vector state in the 4D-Var model. The new algorithm is tested on a one-dimensional-wave equation and on the Lorenz96 system, the latter one being of special interest because of its similarity with numerical weather prediction systems

    Adaptive Observations And Multilevel Optimization In Data Assimilation

    Get PDF
    We propose to use a decomposition of large-scale incremental four dimensional (4D-Var) data assimilation problems in order to make their numerical solution more efficient. This decomposition is based on exploiting an adaptive hierarchy of the observations. Starting with a low-cardinality set and the solution of its corresponding optimization problem, observations are adaptively added based on a posteriori error estimates. The particular structure of the sequence of associated linear systems allows the use of a variant of the conjugate gradient algorithm which effectively exploits the fact that the number of observations is smaller than the size of the vector state in the 4D-Var model. The method proposed is justified by deriving the relevant error estimates at different levels of the hierarchy and a practical computational technique is then derived. The new algorithm is tested on a 1D-wave equation and on the Lorenz-96 system, the latter one being of special interest because of its similarity with Numerical Weather Prediction (NWP) systems
    corecore